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We analyze the motion of an asymmetric top with cavities filled with a viscous 

incompressible liquid, and we study the stabilizing effect of the liquid on the 
rotation of the top around a given axis. The characteristic time for stabilization 

and the best orientation of the cavity relative to the solid body, have been found. 

1. Equation8 of motion and their investigation. In a coordinate sys- 
tem whose axes are directed along the principal inertia axis of a body-liquid system, 
the equations of motion of a top for small Reynolds numbers reduce to the form Cl] 

lo’ + [o, lo] = + {PO.. + [o, ~0’1~ (1.1) 

Here 1 is the system’s inertia tensor, o is the top’s angular velocity, p and Y are the 

liquid’s density and kinematic viscosity, respectively. The right-hand side of (1.1) des- 
cribes the force moment caused by the liquid’s motion relative to the top; terms of a 

higher order of smallness with respect to p / Y are discarded. The tensor P = 1 Pij (1 
is determined only by the shape of the cavity and is symmetric, Pti > 0 . In the case 

of several cavities this tensor equals the sum of the tensors for the individual cavities. 
The computation of the components of this tensor for a given cavity is a separate prob- 

lem. It has been obtained in [l] for cavities of certain shapes. The motion of a solid 
with a symmetric cavity, when the tensor P is a multiple of the unit tensor, was studied 

in [ 11. Here we examine the case of an arbitrary tensor P. 
We rewrite Eq. (1.1) in the form 

M’ + [o, M] = 0, M=lClJ- -+ PO’ 

where M is the system’s total impulse moment. Hence right away we see the two re- 
lations 

MM’=O, M’o=O (1.2) 

i. e. the law of preservation of the impulse moment and the law of dissipation of the 

system’s energy rs _ 2 + (r, PO’) = con& 
(1.3) 

dff dH --- 
df= dt 

; g (0, Pw.) = - -+I*, PO.) < 0 

E = $ (co, lo) - $(a, PO’) 
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Here E is the total energy of the system, J? = Jti and H = Ii2 (w, 1~) are the 
impulse moment and the system’s energy under the assumption that the liquid does not 
move relative to the solid. Since Eq. (1.1) is valid to within terms of order p2 / v2, its 

subsequent investigation is carried out to the same accuracy. Accounting for the higher- 

order terms would require the determination of the following hydrodynamic approxima- 
tion. 

If we set v --_‘ 00, the system’s motion is an Euler-Poinsor motion (see [Z], for exam- 
ple) which depends on three parameters: r2, ti’ and the time reference point. All 
these parameters are independent of time for infinite viscosity. For finite but large vis- 

cosity Eq. (1.3) contains a small parameter ; therefore, we can take agvantage of the 
a~mptotlc methods developed in [3, 4-j. The top’s motion here is treated as the motion 
of a free top in which the parameters N and I’ vary slowly with time, Therefore, the 

period of the effective Euler-Poinsot motion also is a slowly varying function of time, 

and it is convenient to average relations (1.3) over the period of the unperturbed Euler- 
Poinsot motion, Disregarding the parameters’ dependence on time during the averaging, 

we obtain 
I? = con&, 

dH 
- = 
dt 

- $- (o’, Pm’) < 0 (X.4) 

Here and subsequently, by I” and H we shall mean quantities averaged over the Euler- 
Poinsot period, 

The hydrodynamic problem was solved on the assumption that o, o’ , and subsequent 
derivatives are of the order of unity. Therefore those solutions of Eqs. (1.2) and (X,3) 
which satisfy these conditions, are to be selected, The following solutions proposed in 

[l] for the approximate version of Eqs, (1.1): 

10’ + [w, lo] = $-(Pb + [o, Pa]) CL 5) 

a== - d-1 [W, lo], b = - 1-l [a, lo] - 1-l [o, la] 

where a and b are to within p2 / v2 the same as W* and O” , satisfy these conditions. 

Let us investigate the stability of the system’s stationary states, i. e. of the rotations 

around the principal inertia axes. Suppose that the motion is close to a rotation around 

the ith axis: o = Q;ti + 6. Then Eq. (1.5) takes the form 

I8 - + Pbs + [ft*, rs] + Ii [6,%&J - + tni, Pas] = 0 

aa == - 1-l IS, l$Ji] - I-f fB$, 161 

b8 = - 1-l [aa, l&2,] - 1-l [St,, Ia&] 

Setting i = 1, we obtain three first-order differential equations, two of which depend 

only on &and es, while the third depends on all three 81. When developing the charac- 

teristic equation we should discard terms - F” / Y”. It turns out here that its roots depend 

only on the diagonal components of tensor 11 Pi h 11 and are 

Hence it follows that if I, is not the largest moment of inertia, the steady-state rota- 
tions are unstable, Examining the case when 1, is the maximum moment of inertia, we 
need to consider that there is one more root of the characteristic equation, hs = 0. 
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Therefore, to investigate stability we set up the Liapunov function 

V = 2I,E - M2 + (M2 - 1,2Q2,2)2 

It equals zero for the steady-state motion, while in the case of small deviations from it, 

it equals the sum of the polynomial 

Vi== 12 (1, - J*)622+ I, (11 - I&s32 + (112612 + 122622 + I&2 + 21,%htJ2 

and a polynomial proportional to p / v (see [S], for example). When I, > 12, Ia 
the function 1/ thus is a positive-definite function of a,, a,, 6,. But from equalities 

(1.2) and (1.3) it follows that V’ \c 0. Thus, the rotation around the X1 -axis is stable 
by Liapunov’s theorem, which agrees with the results in [l] and with the theorems in [5]. 

2. Averaged motion of a free top, Thus, for o we shall investigate the 

Euler-Poinsot formulas in which energy is a slowly varying function of time. Equations 
(1.5) still remain sufficiently complicated ; therefore, it is convenient to find H from 

Eq. (1.4). For definiteness we assume that I, > I, > I,. We denote 

II -- I2 I2 -- I3 
a=-, b=T, c - II- 13 

13 12 

Let us examine the cases 2H1, < r2 (the trajectories I’ envelop the X,-axis) and 

2HI, > r2 (the trajectories r envelop the X,-axis) separately. In the first case, as 

usual, instead of energy we introduce the dimensionless quantity 

(2.1) 

and instead of time, the dimensionless variable E = (t - to) / T,,, where To is the 

characteristic time of the averaged motion. Substituting the Euler-Poinsot formulas into 

(1.4) and averaging over the period, we write this equation in the form: 

9 = (1 - x) (1 - k12) - s [(l - x) + k12 (1 + X)J (2.2) 

where E (k12), K (k12) are the complete elliptic integrals, and we have used the nota- 

x=3- Pm - Pllb 
&a + ~PZZC t- Pllb 

3 

(2.3) 

The terms containing the off-diagonal components of 11 Pi, 11 fall out during the aver- 

aging. Thus, in the approximation being considered the top’s motion depends only on 
the components of tensor I/ Pi, (1 along the principal inertia axes, which agrees with 

the results obtained by computing the characteristic numbers for a motion close to the 

steady -state one. 
Equation (2.2) coincides with the equation obtained in [l] for tensor P a multiple 

of the unit tensor, but here x can take any value from the range (-3, + 3) instead of 

C-I , + 11. The quantity k, 2 decreases monotonically from 1 to 0 as g increases from 
0 to 00. The solution of Eq. (2.2) can easily be found numerically. The_ corresponding 
graphs are shown in Fig. 1. Obviously, k,2 decreases with the growth of E the faster the 
larger x is. For large values of g (small k12) we can make use of the series expansions 
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of E and K (see [6], for example). Restricting ourselves to quadratic terms, we obtain 

dk12 3 +x 
-K=- 

VT, k12 = const exp 
( 

-_?.$?Qj = 
I 

Gexp (-+-) 
T1=$id$ ’ 

t-‘22c + Pass 

For the case 2HI, > I? it is convenient to introduce the quantity 

(2.4) 

(2.5) 

(2.6) 

The equation for ka2 coincides with Eq. (2.2), but the corresponding expressions for x. 

and T,, differ in sign from (2.3). For small ks2 we obtain 

V IlId 
k,Z=C,exp&, T~=p-p- 

1 

Pzzc + Pub 
(2.7) 

Note that as c increases ks2 grows towards unity. 
Let us now examine how the system’s averaged motion takes place in time. Suppose 

Fig. 1 

e 

that at a certain instant the vector I’ 
is close to the Xs-axis. This signi- 
fies that H z I?2 I 21,. The motion 
is determined by formulas (2.6) (2.7) 
and I’ drifts away from the Xs-axis 

towards the X,-axis, where ks2, 

k*2 Z=:((HZ I’2 / 21,). Subse- 
quently H continues to decrease with 

time approaching the value H = 
r2 / 21,. Here I’ approaches to the 

X1 -axis. Thus, only the motion around 
the X1 -axis is stable, in accord with 

the results in Sect. 1 and the general 
theorems in [5j. The motion of vec- 

tor r coincides with that described 
in [ 11, differing only in the larger 

interval of possible values of x. It is obvious that the total characteristic time of reco- 
very of orientation is of the order of T1 + T, and thus, - Y. Note also that 1 / To== 

( i / T, I+( 1 / T, 1; consequently. T,, < T,, T,. 
It is clear that the most advantageous location or the cavity with liquid within the 

solid is determined by the requirement that both Tt and T, be as small as possible. If 
the diagonal elements of Pi, are strongly different from each other and if the inertia 

tensor of the whole system depends weakly on the location of the cavity with liquid, then, 
as we see from (2.5) and (2.7), we need to orient the cavity relative to the solid so that 
the value of P,, turned out to be the largest of the eigenvalues of Pi,. This remark 
refers, in particular, to the case of a toroidal cavity, where one of the diagonal values of 
pi k is considerably greater than the other two, 

Generally speaking, the Euler-Poinsot period grows unboundedly as k2 + 1 , and ave- 
raging becomes meaningless. But the solution is such only in a narrow range of values 
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of energy when In (1 - k2)-l 2 v. It is not difficult to verify that for the averaged 

motion this segment is passed through in a time of the order of unity. This region cor- 
responds to the location of I? close to the X2 -axis, where even the usual Euler-Poinsot 
motion is unstable. Since the actual motion still contains oscillations, absent in the ave- 
raged motion, in reality this region is passed through more rapidly. Since the total ori- 

entation time - Y, a motion close to the X2-axis does not make an essential contri- 
bution in it. Close to the Xi-axis 

where 0 is the angle between r and the Xl-axis. 

Let us briefly consider the case of a symmetric top. The dimensionless parameter 
corresponding to energy here proves to be simply an exponential function of time. The 
characteristic time of the process is 

T2 = $ a fp22zf$,J rz for I1 > I2 = I3 

Tp= 2 11313 

b (Pzz + &I) Ia 
for 

p 
Ii = 1s > I3 

which coincides with the characteristic time of motion of the top around the X1 or the 

X3 -axis, respectively. If I, > I, = I,, then for any initial rotation the vector I? 
goes to the X,-axis along a spiral. However, in the case 1, = I, > I, the vector I’ 

tends to some axis lying in the X1X2 -plane. The position of this axis is determined 

by the initial conditions. 
The author thanks V.I. Zubov for discussions which occasioned this paper and E, P. 

Churov for guidance. 
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